Starting with ApexCharts
Victor Perrier
2024-12-23
Source:vignettes/apexcharter.Rmd
apexcharter.Rmd
The objective of this vignette is to show how to quickly build data visualizations with the ApexCharts JavaScript library, as well as to give an overview of the different graphics available.
Data used are from ggplot2
package.
library(ggplot2)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
#> object 'type_sum.accel' not found
library(scales)
library(apexcharter)
Bar charts
Simple bar charts can be created with:
Flipping coordinates can be done by using
type = "bar"
:
To create a dodge bar charts, use aesthetic fill
:
For stacked bar charts, specify option stacked
in
ax_chart
:
Line charts
Simple line charts can be created with (works with
character
, Date
or POSIXct
):
To represent several lines, use a data.frame
in long
format and the group
aesthetic:
Area charts
Create area charts with type = "area"
:
data("eco2mix", package = "apexcharter")
apex(eco2mix, aes(datetime, production, fill = source), type = "area") %>%
ax_chart(animations = list(enabled = FALSE), stacked = TRUE) %>%
ax_stroke(width = 1) %>%
ax_fill(opacity = 1, type = "solid") %>%
ax_tooltip(x = list(format = "dd MMM, HH:mm")) %>%
ax_yaxis(labels = list(formatter = format_num("~", suffix = "MW"))) %>%
ax_colors_manual(
list(
"bioenergies" = "#156956",
"fuel" = "#80549f",
"coal" = "#a68832",
"solar" = "#d66b0d",
"gas" = "#f20809",
"wind" = "#72cbb7",
"hydraulic" = "#2672b0",
"nuclear" = "#e4a701",
"pumping" = "#0e4269"
)
) %>%
ax_labs(
title = "Electricity generation by sector in France",
subtitle = "Data from \u00e9CO\u2082mix"
)
You can create ribbon charts using ymin
and
ymax
aesthetics :
data("temperatures", package = "apexcharter")
apex(
temperatures,
aes(x = date, ymin = low, ymax = high),
type = "rangeArea",
serie_name = "Low/High (2018-2021)"
) %>%
add_line(aes(date, `2023`)) %>%
ax_chart(animations = list(enabled = FALSE)) %>%
ax_yaxis(tickAmount = 7, labels = list(formatter = format_num("~", suffix = "°C"))) %>%
ax_colors(c("#8485854D", "#FF0000")) %>%
ax_stroke(width = c(1, 2)) %>%
ax_fill(opacity = 1, type = "solid") %>%
ax_labs(
title = "Temperatures in 2023 with range from 2018 to 2021",
subtitle = "Data from ENEDIS"
)
Scatter charts
Simple bar charts can be created with:
Color points according to a third variable:
And change point size using z
aesthetics:
Pie & donut charts
Simple pie charts can be created with:
poll <- data.frame(
answer = c("Yes", "No"),
n = c(254, 238)
)
apex(data = poll, type = "pie", mapping = aes(x = answer, y = n))
It’s also possible to make donut chart:
Radial charts
Simple radial charts can be created with (here we pass values
directly in aes
, but you can use a data.frame
)
:
Multi radial chart (more than one value):
fruits <- data.frame(
name = c('Apples', 'Oranges', 'Bananas', 'Berries'),
value = c(44, 55, 67, 83)
)
apex(data = fruits, type = "radialBar", mapping = aes(x = name, y = value))
Radar charts
Simple radar charts can be created with:
mtcars$model <- rownames(mtcars)
apex(data = head(mtcars), type = "radar", mapping = aes(x = model, y = qsec))
With a grouping variable:
# extremely complicated reshaping
new_mtcars <- reshape(
data = head(mtcars),
idvar = "model",
varying = list(c("drat", "wt")),
times = c("drat", "wt"),
direction = "long",
v.names = "value",
drop = c("mpg", "cyl", "hp", "dist", "qsec", "vs", "am", "gear", "carb")
)
apex(data = new_mtcars, type = "radar", mapping = aes(x = model, y = value, group = time))
Heatmap
Create a heatmap with :
# create some data
sales <- expand.grid(year = 2010:2020, month = month.name)
sales$value <- sample(-10:30, nrow(sales), TRUE)
apex(
data = sales,
type = "heatmap",
mapping = aes(x = year, y = month, fill = value)
) %>%
ax_dataLabels(enabled = FALSE) %>%
ax_colors("#008FFB")
Boxplot
Create boxplot (without outliers for now) with:
data("mpg", package = "ggplot2")
apex(mpg, aes(hwy, class), "boxplot") %>%
ax_plotOptions(
boxPlot = boxplot_opts(color.upper = "#8BB0A6", color.lower = "#8BB0A6" )
) %>%
ax_stroke(colors = list("#2A5769")) %>%
ax_grid(
xaxis = list(lines = list(show = TRUE)),
yaxis = list(lines = list(show = FALSE))
)
Dumbbell charts
Create Dumbbell chart with:
data("life_expec", package = "apexcharter")
apex(life_expec, aes(country, x = `1972`, xend = `2007`), type = "dumbbell") %>%
ax_plotOptions(
bar = bar_opts(
dumbbellColors = list(list("#3d85c6", "#fb6003"))
)
) %>%
ax_colors("#BABABA") %>%
ax_labs(
title = "Life expectancy : 1972 vs. 2007",
subtitle = "Data from Gapminder dataset",
x = "Life expectancy at birth, in years"
)
Slope charts
Create a slope chart with:
data("life_expec_long", package = "apexcharter")
apex(
life_expec_long,
mapping = aes(x = year, y = lifeExp, fill = country),
type = "slope",
height = "700px"
) %>%
ax_chart(animations = list(enabled = FALSE)) %>%
# aurora nord12 = #d08770 / aurora nord14 = #a3be8c -> darken colorspace::darken(, amount = 0.3)
ax_colors(ifelse(unique(life_expec_long[, c("country", "type")])$type == "decreased", "#955945", "#6A8354")) %>%
ax_labs(
title = "Life expectancy : 1972 vs. 2007",
subtitle = "Data from Gapminder dataset",
x = "Life expectancy at birth, in years"
) %>%
# ax_dataLabels(enabled = FALSE) %>% # show or note the labels + values
ax_xaxis(position = "bottom")